Как повысить КПД электродвигателя: выбираем решение
В современных электромеханических преобразователях обнаруживаются потери энергии в магнитном, электрическом и механическом режимах, в результате возникают проблемы с выделением тепла, увеличением шума и вибрации. Это связано с низкой эффективностью перемещения элементов, перемагничиванием магнитного поля сердечника якоря электродвигателя или скачком нагрузок. Но возможно ли уменьшить эти «утечки» и таким образом улучшить коэффициент полезного действия, и если да, как это сделать? Эту тему мы рассмотрим в данной публикации.
Повышение КПД асинхронных двигателей становится все более актуальной задачей в современной электротехнике. Согласно определению, электрические машины бывают синхронными и асинхронными. Синхронные машины характеризуются одинаковой частотой вращения ротора и магнитного поля. В то время как у асинхронных машин магнитное поле вращается с более высокой скоростью, чем ротор. Большинство (около 90%) двигателей в мире являются асинхронными, в связи с их простотой в изготовлении, надежностью, доступной ценой и низкими эксплуатационными затратами. Кроме того, КПД асинхронных двигателей значительно выше, чем у синхронных.
Однако у асинхронных двигателей также имеются некоторые недостатки. Высокий пусковой ток, недостаточный пусковой момент, несогласованность механического момента на валу привода с механической нагрузкой - все эти факторы приводят к лавинообразному росту силы тока и избыточным механическим нагрузкам при запуске, а также снижению КПД в периоды пониженной нагрузки. К тому же, точная регулировка скорости работы прибора также не является возможной.
Существуют различные подходы к повышению КПД асинхронных двигателей. Некоторые из них включают улучшение обмотки на статоре, использование систем управления частотой и высотой напряжения, а также измельчения материала магнитного ядра внутри машины. Кроме того, применение технологии вариации скорости постоянного тока с использованием системы бесконтактной передачи энергии является возможным способом повышения КПД асинхронных двигателей.
Таким образом, повышение КПД асинхронных двигателей - важная задача для современной электротехники. Существуют различные подходы к решению этой задачи, каждый из которых имеет свои преимущества и ограничения.
Возможности оптимизаторов-контроллеров применения оборудования в промышленности, сельском хозяйстве и сфере жилищно-коммунального хозяйства переносят эффективность дробилок, вентиляторов, ленточных транспортеров, обрабатывающих станков, крутильных агрегатов, лебедок и другого оборудования на новый уровень. Они предотвращают перегрузки кронштейнов при запуске мешалок, нейтрализуют гидроудары в трубопроводах и обеспечивают плавный запуск тяжело и очень тяжело нагруженного оборудования, для чего обычные устройства плавного пуска не подходят.
В статье рассказывается о том, как контроллеры-оптимизаторы могут помочь повысить КПД оборудования за более доступную цену, по сравнению с преобразователями. Например, по цене примерно от 90 до 140 тысяч рублей, можно приобрести устройство мощностью 90 кВт от отечественного производителя.
Контроллеры-оптимизаторы – это устройства, которые быстро реагируют на изменение напряжения и снижают расходы электроэнергии на 30-40%. Они также помогают уменьшить воздействие реактивной нагрузки на сеть, повысить КПД привода, а также экономят деньги на конденсаторных компенсирующих устройствах. Применение контроллеров-оптимизаторов также помогает продлить срок службы оборудования и повышает экологичность производства.
Важным преимуществом контроллеров-оптимизаторов является их доступная цена в сравнении с преобразователями частоты. Однако, необходимо учитывать, что контроллеры-оптимизаторы не могут использоваться в случаях, когда требуется изменять скорость вращения электродвигателя.
Таким образом, контроллеры-оптимизаторы оперативно реагирует на изменения напряжения, экономят электроэнергию, уменьшают реактивную нагрузку на сеть и повышают КПД привода. Они также помогают сократить расходы на конденсаторные компенсирующие устройства, продлить срок службы оборудованию и повысить экологичность производства. Незаменимы они только в тех случаях, когда необходимо изменять скорость вращения электродвигателя.
Как правильно выбрать устройство, способное повысить КПД оборудования? Дело в том, что выбор определенного электропривода зависит от того, как он работает. Нужно понимать, что если необходимо изменять скорость привода, то здесь единственно верным выбором будет преобразователь частоты. Но если скорость вращения двигателя не изменяется или это не является целями, то более доступным решением будет использовать контроллеры-оптимизаторы. Такие устройства обойдутся значительно дешевле, чем преобразователи частоты.
На заметку: Как повысить КПД электродвигателя
КПД – ключевой фактор для эффективности работы электродвигателя. Его наиболее заметные влияющие факторы – степень загрузки по отношению к номинальной, конструкция и модель, степень износа, отклонение напряжения в сети от номинального. Также следует помнить, что перемотка электродвигателя может привести к снижению его КПД.
Для повышения эффективности работы электропривода, важно обеспечивать его загрузку на уровне не менее 75%, увеличивать коэффициент мощности, регулировать напряжение и частоту подаваемого тока, где это возможно. Но не в каждом случае необходимо или возможно реализовывать все из этих мер, так как реализация этих мер зависит от оборудования.
Существуют приборы для повышения КПД электродвигателя, такие как частотные преобразователи, изменяющие скорость вращения двигателя, изменив частоту питающего напряжения, и устройства плавного пуска, ограничивающие скорость нарастания пускового тока и его максимальное значение.
В данной статье мы рассмотрим современные решения для повышения КПД двигателей с позиций экономической целесообразности и эффективности работы.
Повысить эффективность работы электродвигателя можно с помощью частотных преобразователей, которые изменяют однофазное или трехфазное напряжение с частотой 50 Гц на напряжение необходимой частоты (обычно в диапазоне от 1 Гц до 300-400 Гц, а иногда бывает и до 3000 Гц) и амплитуды. Частотные преобразователи подходят для использования в асинхронных двигателях.
Преобразователь частоты, известный также как «частотник», содержит в себе микропроцессор для управления электронными ключами и защиты оборудования, а также схемы, которые работают в качестве ключей и открывают тиристоры или транзисторы. Тиристорные преобразователи частоты более эффективны благодаря способности работать с высокими напряжениями и токами и достигать КПД до 98%, но это преимущество становится практически незаметным при небольших мощностях.
Существуют два класса преобразователей частоты, которые отличаются устройством и принципами работы:
- Преобразователи с непосредственной связью представляют собой выпрямители. В результате отпирания тиристоров и подключения обмотки к сети формируется выходное напряжение с ограниченным диапазоном управления скоростью вращения привода и частотой 0–30 Гц. Однако такие преобразователи не подходят для оснащения мощного оборудования, регулирующего множество технологических параметров.
- Преобразователи с промежуточным звеном постоянного тока производят двойное преобразование энергии: входное напряжение выпрямляется, затем фильтруется и сглаживается, а потом при помощи инвертора снова трансформируется в напряжение с необходимой амплитудой и частотой. Хотя такое преобразование может снижать КПД оборудования, преобразователи частоты второго типа имеют широкое применение благодаря способности давать на выходе напряжение с высокой частотой.
Одним из наиболее популярных типов преобразователей частоты являются устройства второго типа, которые обеспечивают плавную регулировку оборотов двигателей.
Варианты преобразователей, используемые в современных системах управления электроприводами, различаются по своим функциональным возможностям и эффективности применения. Для электроприводов насосов или вентиляторов, например, часто применяются преобразователи с невысокой перегрузочной способностью и U/f-управлением, способные легко управлять начальным значением напряжения для повышения момента двигателя на низких частотах.
Но для более серьезных применений, таких как на прокатных станах, конвейерах, подъемных устройствах и упаковочном оборудовании, рекомендуется использовать частотные преобразователи с векторным управлением. Они не только могут регулировать частоту и амплитуду выходного напряжения, но и фазы тока через обмотки статора.
Торможение двигателя также может быть контролируемым с помощью специальных функций замедления, главным образом управляемых «частотниками», оснащенными встроенными или внешними блоками торможения и тормозным резистором, а также рекуперативным блоком торможения во время динамического торможения. Такие устройства особенно важны для механизмов станков и конвейеров.
Некоторые комплексные системы, например, в робототехнике, дерево- и металлообработке, используют сложные частотные преобразователи с обратной связью, которые обеспечивают повышенную точность и надежность в замкнутых системах для поддержания постоянной скорости вращения в условиях переменной нагрузки.
Запись о стоимости «частотников»
В настоящее время, по словам финансистов, стоимость «частотников» нестабильна: за последние полтора года цены значительно увеличились. Это обусловлено не только колебаниями валютного курса, но и другими факторами. Например, частотные преобразователи производства России и зарубежных стран мощностью 90 кВт стояли примерно от 200 до 700 тысяч рублей для покупателей в 2021 году.
В данном случае мы имеем преобразователь частоты, который используется для асинхронного двигателя. Описав его рабочий принцип выше, можно утверждать, что данный прибор способен уменьшить затраты электроэнергии, обеспечить плавный запуск механизма, обеспечить точное регулирование скорости вращения при изменяющейся нагрузке и увеличить пусковой момент. Кроме того, все вышеперечисленное в сумме ведет к увеличению коэффициента полезного действия машины.
Несмотря на эти очевидные преимущества, следует отметить некоторые недостатки такого «частотника». В первую очередь, стоит заметить его достаточно высокую стоимость. Кроме того, в процессе эксплуатации преобразователь может создавать электромагнитные помехи.
Существуют устройства плавного пуска (УПП), которые используются для обеспечения плавного запуска, разгона и остановки электродвигателя. Они ограничивают скорость увеличения пускового тока в течение определенного времени. Однако традиционные устройства плавного пуска не способны повысить КПД и могут применяться только для управления приводами с небольшой нагрузкой на валу.
Контроллеры-оптимизаторы - это разновидности УПП, которые позволяют повысить энергоэффективность двигателей. Они согласовывают крутящий момент с моментом нагрузки и способствуют снижению потребления электроэнергии на минимальных нагрузках на 30–40%. Контроллеры-оптимизаторы предназначены для приводов, которые не нуждаются в изменении числа оборотов двигателя.
Например, эскалатор потребляет большое количество энергии, и для снижения энергопотребления при помощи преобразователя частоты, нужно уменьшить скорость эскалатора. Однако, это невозможно, так как это увеличит время подъема пассажиров. Контроллеры-оптимизаторы позволяют снизить энергопотребление без изменения скорости электропривода в тех случаях, когда он недогружен.
Контроллеры-оптимизаторы – это устройства, которые выполняют функцию регуляторов напряжения для питания электродвигателей. Они предоставляют контроль над фазами напряжения и тока, обеспечивают полное управление приводом на всех этапах работы и защищают его от повышенного и пониженного напряжения, перегрузки, обрыва или нарушения чередования фазы и т.д.
Контроллеры-оптимизаторы также согласовывают значение крутящего момента, развиваемого электродвигателем, с его нагрузкой на валу, путем изменения напряжения для питания двигателя. В процессе регулирования крутящего момента скорость вращения ротора остается прежней, а коэффициент мощности повышается. Это оборудование является функционально законченным и не требует подключения дополнительных устройств.
В период работы привода в условиях динамически изменяющихся нагрузок контроллер обеспечивает прекращение отбора мощности из сети электропитания в те моменты, когда полупроводниковые переходы тиристоров (управляемых диодов) задерживают электрический ток. Размыкание тиристоров происходит периодически при поступлении управляющих сигналов, период, задержка которых определяется относительным значением загрузки привода.
Важно помнить, что скорость реакции контроллера-оптимизатора на изменение нагрузки составляет сотые доли секунды.
Фото: freepik.com